超级细菌-九游网官方网站入口

900 次浏览2018.01.18 提问

最佳答案
本回答由提问者推荐

2018.01.18 回答

超级病菌是一种耐药性细菌,这种超级病菌能在人身上造成浓疮和毒疱,甚至逐渐让人的肌肉坏死。更可怕的是,抗生素药物对它不起作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡。这种病菌的可怕之处并不在于它对人的杀伤力,而是它对普通杀菌药物——抗生素的抵抗能力,对这种病菌,人们几乎无药可用。

2010年,英国媒体爆出:南亚发现新型超级病菌ndm-1,抗药性极强可全球蔓延。2010年10月26日,中国疾病预防控制中心通报三起感染超级耐药致病细菌病例。2015年3月,美出台对抗“超级细菌”计划,拟五年内感染率减半。2016年5月26日,美国疾病控制和预防中心证实,美国发现首例“超级细菌”病例。2017年1月,美国女患者感染的“超级细菌”对26种抗生素都毫无反应,最终不治身亡。

“超级细菌”更为科学的称谓应该是“产ndm-1耐药细菌引”,即携带有ndm-1基因,能够编码ⅰ型新德里金属β-内酰胺酶,对绝大多数抗生素(替加环素、多粘菌素除外)不再敏感的细菌。临床上多为使用碳青霉烯类抗生素治疗无效的大肠埃希菌和肺炎克雷伯菌等革兰氏阴性菌造成的感染。

“超级细菌”泛指临床上出现的多种耐药菌,如耐甲氧西林金黄色葡萄球菌(mrsa)、抗万古霉素肠球菌(vre)、耐多药肺炎链球菌(mdrsp)、多重抗药性结核杆菌(mdr-tb),以及碳青霉烯酶肺炎克雷伯菌(kpc)等。此次发现的“产ndm-1耐药细菌”与传统“超级细菌”相比,其耐药性已经不再是仅仅针对数种抗生素具有“多重耐药性”,而是对绝大多数抗生素均不敏感,这被称为 “泛耐药性”(pan- drug resistance,pdr)。

形成原因

是由于环境卫生死角多年长成的

滥用抗生素是超级病菌产生的第二原因

由病菌引发的疾病曾经不再是人类的致命威胁,每一种传染病用抗生素治疗都能取得很好的疗效,但这是抗生素被滥用之前的事情了。每年全世界有50%的抗生素被滥用,而我国这一比例甚至接近80%。正是由于药物的滥用,使病菌迅速适应了抗生素的环境,各种超级病菌相继诞生。过去一个病人用几十单位的青霉素就能活命,而相同病情,现在几百万单位的青霉素也没有效果。

基因突变是超级细菌产生的根本原因

基因突变是产生此类细菌的根本原因。但在自然状况下,变异菌在不同微生物的生存斗争中未必处于优势地位,较易被淘汰。抗生素的滥用则是这类细菌今日如此盛行的导火线,由于人类滥用抗生素,使得原平衡中的优势种被淘汰,而这种“抗抗生素”的细菌则顺利成长的成为了优势种,取得了生存斗争的优势地位,从而得以大量繁衍、传播。综上,基因突变是产生此类细菌的主要原因,抗生素的滥用对微生物进行了定向选择,导致了超级细菌的盛行。所以,一方面,我们在寻找解决途径的同时,必须注意对抗生素等物质的使用。

感染症状

因为不同的细菌感染有不同的症状,而超级细菌不会产生新的疾病,只是对抗生素没有反应了,所以比如说原来这种细菌感染是什么症状,当它转化成超级细菌时,它仍然是这种症状,只是较难治愈。

传播方式

(1)经血传播:如输入全血、血浆、血清或其它血制品,通过血源性注射传播;

(2)胎源性传播:如孕妇带毒者通过产道对新生儿垂直传播;

(3)医源性传播:如医疗器械被乙肝病毒污染后消毒不彻底或处理不当,可引起传播;用1个注射器对几个人预防注射时亦是医源性传播的途径之一;血液透析患者常是乙型肝炎传播的对象;

(4)性接触传播:近年国外报道对性滥交、同性恋和异性恋的观察肯定证实;

(5)昆虫叮咬传播:在热带、亚热带的蚊虫以及各种吸血昆虫,可能对病毒传播起一定作用;

(6)生活密切接触传播:与病毒携带者长期密切接触,唾液、尿液、血液、胆汁及乳汁,均可污染器具、物品,经破损皮肤、粘膜而传播。

主要种类

新德里金属-β-内酰胺酶1(简称为ndm-1)

ndm-1是科学家发现的一种新的超级耐药基因,编码一种新的耐药酶,称为ndm-1金属β-内酰胺酶。ndm1是酶菌,肠杆菌的一种,与大肠杆菌(e.coli)、沙门氏菌属同一类(产ndm1型酶的细菌如今发现的是鲍曼不动杆菌,是革兰阴性杆菌,属于非发酵菌,与大肠、沙门、肺炎克雷伯菌等肠杆菌科细)。最近受到媒体广泛关注的所谓"超级细菌"实际上是一种产新发现的碳青霉烯酶--新德里金属β-内酰胺酶-1(new delhi metallo-beta-lactamase-1,ndm-1)的肠杆菌科细菌,产此酶的ndm-1基因(blandm-1)常见于大肠埃希菌、肺炎克雷伯菌及阴沟肠杆菌等,已在南亚发现高度耐药的感染病例,受到医学界高度重视。这种脱氧核糖核酸结构可以在同种甚至异种细菌之间“轻松”复制。研究人员现阶段多在大肠杆菌和肺炎克雷伯氏菌等细菌内发现ndm—1基因。

(注:更多关于新德里金属-β-内酰胺酶1的危害预防等知识请翻阅参考资料 ,或点击该词条内链)

耐甲氧西林金黄色葡萄球菌(简称为mrsa)

金黄色葡萄球菌是临床上常见的毒性较强的细菌,自从本世纪40年代青霉素问世后,金黄色葡萄球菌引起的感染性疾病受到较大的控制,但随着青霉素的广泛使用,有些金黄色葡萄球菌产生青霉素酶,能水解β-内酰胺环,表现为对青霉素的耐药。因而人们又研究出一种新的能耐青霉素酶的半合成青霉素,即甲氧西林(methicillin)。1959年应用于临床后曾有效地控制了金黄色葡萄球菌产酶株的感染,可时隔两年,英国的jevons就首次发现了耐甲氧西林金黄色葡萄球菌,mrsa从发现至今感染几乎遍及全球,已成为院内感染的重要病原菌之一。因此,开展对mrsa的检测,对于控制医院内感染的流行,指导临床治疗有着十分重要的意义。

(注:更多关于耐甲氧西林金黄色葡萄球菌的耐药特性及检测等请翻阅参考资料,或点击该词条内链)

抗万古霉素肠球菌(简称为vre)

肠球菌是一种移生在肠道的革兰氏阳性球菌,故名肠球菌。在十九世纪末发现,早期归为链球菌属。1900年代初期,发现肠球菌是引起泌尿道感染及心内膜炎的原因之一。1930年代中期,依lancefield血清分型,肠球菌被归类为d族链球菌,但是与非肠球菌的d族链球菌,如streptococcus bovis,在生化特性上有相当的差异性。直到1984年,经由核酸的研究,进一步证实肠球菌和链球菌的不同,而将肠球菌自行独立成为一属。目前肠球菌属有18个种(species), 其中以e. faecalis最为常见,约占分离菌株的85%至90%,其次为e. faecium,约占10%至15%。其他较为罕见的有e. gallinarum、e. casseliflavus以及e. durans等。e.faecium经常对ampicillin及vancomycin具有抗药性,是所有肠球菌中最难治疗的。

(注:更多关于抗万古霉素肠球菌的知识请点击该词条内链)

革兰氏阴性菌(用g-表示)

主词条:革兰氏阴性菌

革兰氏染色反应呈红色(复染颜色)的细菌称为革兰氏阴性细菌,用g-表示。

革兰氏阴性细菌的细胞壁中肽聚糖含量低,而脂类物质含量高,当用乙醇处理时,脂类物质溶解,细胞壁的通透性增加,使结晶紫-碘复合物易被乙醇抽出而脱色,然后又被染上了复染液(番红)的颜色,因此呈现红色。(若结晶紫染色过度即使是阴性菌也会变成紫色,若究竟脱色过度即使是阳性菌业会变成粉红色。)

革兰氏阴性菌,以大肠杆菌为代表。大肠杆菌为兼气性菌种,一般生存于肠道中及厌氧的环境中。革兰氏阴性菌细胞壁的特征为有一层outer membrane 与阳性菌种不同。目前对大肠杆菌的研究很多,除了它是一般食物中是否有被污染的指标外,很多分子生物学方面的研究皆需要使用到大肠杆菌当作实验宿主。

革兰氏染色步骤:

1、 取载玻片用纱布擦干,载玻片的一面用marker笔画一个小圈(用来大致确定菌液滴的位置)。涂菌的部位在火焰上烤一下,除去油脂。

2.涂片: 

液体培养基:左手持菌液试管,在酒精灯火焰附近5cm左右打开管盖;右手持接种环在火焰中烧灼灭菌,等冷却后从试管中沾取菌液一环,在洁净无脂的载玻片上涂直径2mm左右的涂膜,最后将接种环在火焰上烧灼灭菌。 

固体培养基:先在载玻片上滴一滴无菌水,再用接种环取少量菌体,涂在载玻片上,使其薄而均匀。 

3、 晾干:让涂片在空气中自然干燥。 

4、 固定:让菌膜朝上,通过火焰2-3次固定(以不烫手为宜)。

5、 染色:将固定过的涂片放报纸上,滴加草酸铵结晶紫液,染1min。 

6、 水洗:用水缓慢冲洗涂片上的染色液,用吸水纸吸干。简单染色结束可观察细胞形态。 

7、 媒染:滴加1滴碘液,染1min,水洗。

8、 脱色:吸去残留水,连续滴加95%乙醇脱色20-30s至流出液无紫色,立即水洗。 9、 复染:滴加蕃红复染3-5min,水洗。至此,革兰氏染色结束。

社区获得型mrsa(ca-mrsa)

它的来源至今仍是个谜,研究者发现ca-mrsa有与医院里的mrsa不同的遗传背景,它会感染短期与医院没有接触的健康人群。与医院里的mrsa不同,ca-mrsa不具备多重耐药性,通常只对一两种抗生素耐药,并且多数可以用万古霉素杀灭。1997年,在纽约发现了ca-mrsa的另一个变种,这种菌株带有一种被称为pvl基因编码的强烈毒素。这是一种缩氨酸,由氨基酸形成的化合物,这种缩氨酸会造成称为中性粒细胞的免疫细胞爆炸,毁灭对抗感染的主要防御力量,24小时之内迅速破坏肺脏使人死亡。类似的变种出现了17个。它们的出现意味着mrsa家族开始走出医院,大开杀戒。监狱、体育馆等地方成为ca-mrsa感染的新根据地,病菌迅速在英、美两国蔓延,并有向世界性流行发展的趋势。

la-masa超级细菌

以英国为发源地的超级细菌已经开始在多个国家被发现。据美国媒体报道,这种超级细菌被称为la-masa超级细菌,主要存在于禽类体内,感染率极高,但是对人体危害很小。在澳洲墨尔本,已经有多人受到超级病菌的感染,目前美国检测部门也发表警告称这种病菌已经开始蔓延,在问题农场有三分之二的家禽受到感染,大量受感染的火鸡可能已经流向零售市场,人们需要多加防范。

社会危害

由细菌引发的疾病曾经不再是人类的致命威胁,每一种传染病用抗生素治疗都能取得很好的疗效,但是抗生素的滥用改变了这一局面。每年在全世界大约有50%的抗生素被滥用,而中国这一比例甚至接近80%。正是由于药物的滥用,使细菌迅速适应了抗生素的环境,各种超级细菌相继诞生。由于耐药菌引起的感染,抗生素无法控制,最终导致病人死亡。在上世纪60年代,全世界每年死于感染性疾病的人数约为700万,而这一数字到了本世纪初上升到2000万。死于败血症的人数上升了89%,大部分人死于超级细菌带来的用药困难。

细菌耐药性问题已经非常严重。在发达国家,有5%~10%的住院病人发生过一次或更多的感染。美国每年发生医院感染的患者约为200万,死亡90000人,经济损失达45亿~57亿美元。在发展中国家,发生医院感染的危险要高出发达国家2倍~20倍。中国医院感染发生率为6%左右,但漏报率很高,可达50%以上,致死率尚不清楚。主要感染部位依次为下呼吸道、泌尿道及手术切口感染等。

预防措施自身预防

1.合理使用抗生素,防止滥用抗生素,是预防超级病菌流行的最重要的手段。合理使用抗菌药物,控制或减缓细菌耐药性的产生,已经到了刻不容缓的地步。公众应慎重使用抗生素,对抗生素的使用要坚持“四不”原则:不随意买药、不自行选药、不任意服药、不随便停药。

2.注意个人卫生,尤其是正确洗手,加强身体锻炼,合理膳食,注意休息,提高机体的抵抗力。

3.如果去医院探视vre感染的患者,应听从医院有关人员的指导,做好消毒、隔离工作,避免因探视而感染此种疾病。

4.自身免疫力是最好武器:由于“超级细菌”难以治疗,对付它最好办法是防御。

全球监控

美联社分析,这种超级细菌虽恐怖,但控制它的传播并非没有办法,毕竟迄今感染患者人数较少。英国伯明翰大学分子遗传学教授克里斯托弗·托马斯说:“我们可能正处于新一轮抗生素抗药性的初始阶段,我们仍有能力阻止它。”他认为,良好的监控和疾病控制程序可以阻止超级细菌传播。

加拿大卡尔加里大学微生物学专家约翰·皮特奥特这般评论《柳叶刀传染病》那篇关于超级细菌的报告:“应该用极端严密的监控阻止多重抗药性细菌传播。”他建议国际社会加强对超级细菌的监控,尤其是那些推广“医疗旅行”的国家。

科学检测

中国疾控中心和和中国军事医学科学院实验室,在对既往收集保存的菌株进行检测时,检出三株ndm1基因阳性细菌,也就是俗称的超级细菌。其中,两株细菌是由宁夏自治区疾控中心送检,菌株分离自该区某医院的两名新生儿粪便标本;另一株由福建省某医院送检,菌株分离自该院一名住院老年患者的标本。

世卫呼吁

世界卫生组织再次呼吁,为控制抗生素耐药性,全球应作更大努力,通过开发和使用临床诊断手段,并采用日益改进的全球信息技术,追踪和控制耐药性问题的扩散,避免不断出现“超级细菌”。

药物管理

人们致力寻求一种战胜超级病菌的新药物,但一直没有奏效。不仅如此,随着全世界对抗生素滥用逐渐达成共识,抗生素的地位和作用受到怀疑的同时,也遭到了严格的管理。在病菌蔓延的同时,抗生素的研究和发展却渐渐停滞下来。失去抗生素这个曾经有力的武器,人们开始从过去简陋的治病方式重新寻找对抗疾病灵感。找到一种健康和自然的疗法,用人类自身免疫来抵御超级病菌的进攻,成为许多人对疾病的新共识。

治疗方法

抗生素疗法

对“超级细菌”起作用的抗生素有两种,一种是多黏菌素,另一种是替加环素。但英国卫生防护局抗药性监测实验室负责人利弗莫尔说,多黏菌素具有毒副作用,而替加环素只能用于治疗部分种类的细菌感染,都不适合大规模使用[1]。

轻、中度感染:敏感药物单用即可,如氨基糖苷类、喹诺酮类、磷霉素等,也可以联合用药,如氨基糖苷类联合环丙沙星、环丙沙星联合磷霉素等。无效患者可以选用替加环素、多粘菌素。

重度感染:根据药物敏感性测定结果,选择敏感或相对敏感抗菌药物联合用药,如替加环素联合多粘菌素、替加环素联合磷霉素、替加环素联合氨基糖苷类、碳青霉稀类联合氨基糖苷类、碳青霉稀类联合多粘菌素、喹诺酮类联合碳青霉稀类等。应严密观察患者治疗反应,及时根据药物敏感性测定结果以及临床治疗反应调整治疗方案。

代表性抗菌药物

1. 替加环素(tigecycline):四环素类衍生物,超广谱抗菌药物,对产ndm-1细菌mic90值为2-8mg/l,敏感率56%-67%。临床研究单用或联合用药产碳青霉烯酶细菌感染有一定疗效。

2. 多粘菌素(polymyxins):属多肽类抗菌药物,包括多粘菌b和粘菌素两种。粘菌素对产ndm-1细菌mic90值2-32mg/l,敏感率89%-100%。小样本研究提示单用治疗效果差,需要和其他药物联合用药。口服不吸收,需要静脉注射给药,肾毒性明显。

3. 碳青霉烯类:产ndm-1细菌对碳青霉烯类耐药,但体外mic值差异较大,个别研究发现,对mic值低(<4mg/l)的感染有一定疗效,需要和其他药物联合使用。

4. 氨基糖苷类:不同药物间呈部分交叉耐药,中国临床分离的产金属β-内酰胺酶肠杆科细菌对阿米卡星、异帕米星具有一定敏感性。对轻、中度感染可以单用,重度感染需要与其他药物联合应用。用药期间注意药物耳肾毒性。

5. 氟喹诺酮类:肠杆科细菌对氟喹诺酮类耐药突出,需要根据药物敏感性测定结果选择药物。

6. 磷霉素:体外研究表明对部分耐药菌有效,但缺乏临床研究数据。

1
网站地图